Roll	No. Total No. of Pages : 02						
Tota	I No. of Questions : 07						
	M.Sc. (Mathematics) (2019 Batch) (Sem.–2) ALGEBRA-I Subject Code : MSM-101 M.Code : 74720						
Time	e : 3 Hrs. Max. Marks : 80						
INST	RUCTIONS TO CANDIDATES :						
1.	SECTION-A is COMPULSORY consisting of EIGHT questions carrying TWO marks each.						
2.	SECTION - B & C. have THREE questions in each section carrying SIXTEEN marks each.						
3.	Select atleast TWO questions from SECTION - B & C EACH.						
	SECTION-A						
1.	Answer briefly :						
	(a) Prove that $/ * = / - \{0\}$ is an Abelian group under multiplication.						
	(b) Show that intersection of two subgroups of a group G is also a subgroup of G.						
	(c) Define quotient group and give an example.						
	(d) Determine whether the permutation $(1,2,3,4,5)(1,2,3)(4,5)$ is even or not?						
	(e) Define a subnormal series of a group and give an example.						

- (f) State Fundamental theorem on finite Abelian groups.
- (g) Is Z an ideal of Q? Justify.
- (h) Define a simple ring and give an example.

SECTION-B

2.	(a)	Show that every subgroup	o of an Abelian	group is normal.	[8]
----	-----	--------------------------	-----------------	------------------	-----

(b) If N and M are two normal subgroups of a group G, show that NM is also normal subgroup of G. [8]

1 | M-74720

(S30)-561

Download all NOTES and PAPERS at StudentSuvidha.com

3. (a) Prove that no group of order 108 is simple. [6]
(b) Let G be a group with O(G) = pq, p, q are distinct primes. Show that G is cyclic. [10]
4. (a) Show that a group G is solvable if and only if G ⁽ⁿ⁾ = (e) for some non-negative integer n. [10]
(b) Find the derived subgroup of S₃. [6]

SECTION-C

5.	(a) State and prove Sylow's third theorem.	[10]
	(b) Show that a group of order 36 has either 1 or 4 Sylow 3-subgroups.	[6]
6.	 (a) Show that any finite additive Abelian group is internal direct product of its subgroups. (b) If <i>I</i> and <i>J</i> arc two ideals of a ring <i>R</i>, then show that <i>I J</i> is an ideal of <i>R</i> if and of <i>R</i>. 	5 Sylow [10] only if
	either I	[6]
7.	(a) State and Prove Fundamental theorem of Ring homomorphism.	[10]
	(b) Give an example of a maximal ideal of a ring R, which is not prime.	[6]

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-74720

(S30)-561

Download all NOTES and PAPERS at StudentSuvidha.com